INTRODUCTION TO ERGONOMICS & EXPOSURE ASSESSMENT

Instructor: Nicholas Warren, The Exchange, 860-679-4023; <u>warren@nso.uchc.edu</u> PUBH 497 BME 5339

	Learning Objective	Competency	Core Area
1.	Demonstrate a working knowledge of human anatomy and physiology relevant to the work process.	Describe genetic, physiologic and psychosocial factors affecting susceptibility to adverse environmental health hazards.	Public Health Biology
		Apply evidence-based principles and scientific knowledge base to critical evaluation and decision- making in public health	Occupational Health
2.	Understand and apply an integrated knowledge of multi-level, ergonomic risk factors	Assess strengths and limitations of various research designs in interpreting results of public health studies	Behavioral Health
		Describe genetic, physiologic and psychosocial factors affecting susceptibility to adverse environmental health hazards.	Epidemiology Behavioral Health Occupational Health
		Apply evidence-based principles and scientific knowledge base to critical evaluation and decision- making in public health	
3.	Be able to practically assess presence, intensity, and duration of all ergonomic risk factors, using multiple methods of varying detail	Apply evidence-based principles and scientific knowledge base to critical evaluation and decision- making in public health	Epidemiology Occupational Health Behavioral Health Biostatistics
4.	Understand the social, political and regulatory environment of companies and workers affects levels of risk factors and their control	Describe the roles biostatistics and epidemiology play in informing scientific, ethical, economic and political discussion of health issues Identify vital statistics and	Health Policy Epidemiology
		other key data sources for describing socioeconomic conditions and health states of communities	
5.	Propose practical intervention techniques to reduce presence of ergonomic risk factors in work situations.	Apply evidence-based principles and scientific knowledge base to critical evaluation and decision- making in public health	Health Policy Occupational Health

Summary

This problem-based course begins with a work-related overview of the design strengths and limitations of human anatomy and physiology (molecular, tissue and systems levels). Definition and measurement of "normal" and "non-normal" or pathological conditions are explored. Measurement of the response of these biological tissues and systems to work-related stressors is examined, to define the mechanism and presentation of cumulative trauma disorders. The course focuses on the translation of external exposure to internal response. It addresses physiological and anatomical damage due to both biomechanical and psychosocial stressors and explores the range of possible control strategies of interest to the engineer and public health practitioner. These range from job- and task-specific engineering changes to organization-level interventions. For each type of exposure, students are exposed to a range of measurement approaches, combined with an exploration of issues and trade-offs in exposure assessment.

Finally, the course explores the role of human cognition and perception in work performance and the contribution of work/worker mis-matches to the development of disease. Throughout the course, students will examine the political and social issues involved in identifying disease and risk factors and in altering work and organizations to control these risks.

Syllabus Fall 2009

PUBH 497 BME 5339

Text: Kroemer and Grandjean; Fitting the Task to the Human

We	<u>ek:</u>	<u>Date</u>
1.	 Introduction to Ergonomics & Exposure Assessment a. Overview and extent of the field 1) Terminology 2) Measurement 3) Multi-factoral and multi-level nature of risk 	9/4/09
	 4) Issues and controversies; measurement, epidemiological, "con (gender, age, class) and political/economic 	nfounders"
	 b. Ergonomics: 1) Themes of the course 2) Overview of ergonomics 	
	 3) Issues and Controversies c. Exposure Assessment: Themes of the course Issues and trade-offs 	
	 d. Human & work design features e. Homework: Kroemer 1 & 2Armstrong et al. Pathology readings: Putz-Anderson, (reference), Cherniack Leder Cherniack/Warren, Exercise: human/machine system Groundwork for project 	rer,

2.	 Morphology & Physiology of Neuromuscular System; Normal Function and Disease (MSD) a. Symptom Surveys b. Muscle morphology and physiology Mechanism of contraction length/tension relationship c. Tendon morphology d. Ligaments e. Nerve structure and physiology Nature of nerve impulse f. Bone & cartilage Pathology; non-normal function Homework: Kroemer & Grandjean, Chapters 1 & 2 & 3, 4, 5, 7 Warren: OSHA Standard Risk Factors chapter, section B Epi readings on biomechanical risk factors, NIOSH yellow book Epi and lab articles on biomechanical risk 	9/11/09
3.	 Pathology: MSDs (continued), Extent and Costs a. Finish pathology overview b. Extent of MSD problem c. Underreporting d. Costs of MSDs e. Homework: epidemiology articles Anton-MSDs in dental hygienists Anderson-MSD causes in computer users Gerr-summary of evidence for MSDs in computer users 	9/18/09
4.	Epidemiology Primer and examples a. Epi background b. CUSP example c. Homework 1) Punnett & Herbert Gender 2) 1 page project proposal 3) Review OSHA standard documents	9/24/09
5.	 Biomechanical Risk Factors a. MSD and Low Back Pain/Injury b. Issues and Controversies in exposure assessment: Exposure and outcome Measurement issues Terminology issues Work-relatedness Multifactoral causation c. Concepts of dose, body burden, reparative capacity d. Biomechanical Risk Factors 	10/1/09
	 a. Biomechanical Risk Factors 1) Repetition 2) Force 3) Posture 	

Posture
 Mechanical Compression

- 5) Dynamic Factors
- 6) Vibration
- e. Modifiers
- f. Anthropometry design considerations
- g. Back anatomy and risk
- h. Gender
 - 1) CUSP as example
- i. Introduction to Task Assessment
 - 1) Job division, task characterization, work sampling
 - 2) Multiple levels
 - 3) Self-Report
 - 4) Checklists
 - 5) Quantitative methods
 - 6) Observational Techniques
- j. Instrumented Techniques
 - Homework: observational postural techniques
- 6. Qualitative & Qualitative Biomechanical Assessment
 - a. Intro to Task Assessment: macro-scheduling
 - 1) Job division, task characterization, work sampling
 - 2) Multiple levels
 - b. Self-Report
 - c. Checklists
 - d. Observational Techniques
 - e. Postural Methods (cont)
 - 1) OWAS
 - 2) RULA
 - 3) Corlett
 - 4) Armstrong
 - 5) NIOSH Lifting Equation
 - f. Homework
 - 1) Barefoot ergonomic analysis
 - 2) NIOSH lifting equation
- 7. Quantitative Biomechanical Assessment (Cont)
 - a. Computer-based videotape analysis
 - b. Estimating Back Exposures
 - 1) NIOSH Lifting Equation-go over homework
 - 2) Washington and OSHA tools
 - 3) Other computer tools
 - 4) Psychophysical tools—Snook tables
 - 5) Metabolic Modeling
 - 6) Heart Rate Monitoring
 - 7) Respiratory Gas Monitoring
 - c. Homework:

Drury (Chap 2), Chapter 6 Kodak (timed activity analysis), macroscheduling Metabolic load readings, Garg, Metabolic Modeling

10/15/09

10/8/09

8.	 Metabolic Load; Cardio-respiratory physiology & energy consumption a. Lab work; measurement of energy consumption, rest times b. Exercise: calculating metabolic load; Garg modeling methods Other tools: RPE scales Snock tables 	10/22/09
	 b) Snook tables c. Work scheduling d. Homework: Andersson instrumented techniques Macroscheduling for project 	
	 e. Homework: ANSI vibration standard 2 epidemiological articles: Bovenzi; Chetter et al. 	
9.	 Vibration a. Review of Quiz b. Vibration: 1) Health Effects 2) Measurement 3) Abatement c. Homework: Psychosocial and Organizational 1) Kroemer chapters 12-16, 2) Faucett and Rempel, Bongers 3) Excerpts from Healthy Work 4) Progress report for project 	10/29/09
10	Quiz and Human Factors	11/5/09
11	 Psychosocial Risk Factors; Job Stress a. Psychosocial Risk Factors, Human Factors, 1) Human Factors, Cognitive Load, and Perception 2) JCQ and Effort Reward Models b. Homework OSHA Standard Excerpts Kodak books, Cox Kroemer 177-190 (10); 219-239 (13, 14) 	11/12/09
12	 Stress Measurement: Physiological and Behavioral Assessment a. Measurement of Psychosocial Work Environment b. Physiological and behavioral assessment c. Symptoms as risk assessment d. Measurement of Organizational Factors e. Homework Warren & Hodgson Epi articles, built environment NIOSH Work Organization book 	11/12/09
13	Organizational Factors	11/19/09

		ılture ructure	
-		IA case study	
		easurement of Organizational factors	
-		surveys	
		administrative data	
	3)	observed characteristics	
	4)	Qualitative methods	
е	. Ho	omework	
		ivironmental readings	
	Pr	oject final work	
	/ — 1		11/00/00
	(1)	hanksgiving Vacation)	11/26/09
14. E	nviro	nmental Ergonomics, social/economic costs of MSDs, and	
		tion/ergonomic programs	12/3/09
	a. Anne Bracker: Environmental Ergonomics:		
		Illumination	
	2)	temperature	
	3)	humidity	
	4)	noise	
	,	chemicals	
b		m Morse: ergonomic implications and regulation	
	,	Soc/economic	
	,	Regulation/	
		Ergonomic Programs	
	4)	Interventions: Aspects of Participatory Ergonomics	~~
		a) Ergonomic Programs, Multi-factoral and multi-level intervention	15

15. Student Presentations

12/10/09